When:
October 3, 2016 @ 9:00 am – October 5, 2016 @ 4:00 pm
2016-10-03T09:00:00-05:00
2016-10-05T16:00:00-05:00
Where:
TONEX Plano Office
1400 Preston Rd #400
Plano, TX 75093
USA
Cost:
2499
Contact:
Howard Gottlieb
Print Friendly, PDF & Email

Aerospace systems engineering training covers the fundamentals of systems engineering and their applications in aerospace systems, emphasizing on commercial and military systems We will provide you with a practical knowledge of all components, technical and managerial, included in systems engineering as used in aerospace systems of variable complexity. This hands-on training will focus on the challenging parts in systems development including requirements definition, integration, distribution of requirements, risk management, verification and validation. We also will discuss the techniques and methods used on commercial systems, DoD, NATO and NASA programs.

Aerospace Systems Engineering Training<img class=”aligncenter wp-image-11793″ src=”https://i1.wp.com/www.tonex.com/wp-content/uploads/Aerospace-Systems-Engineering-Training.jpg?resize=325%2C221&ssl=1″ alt=”Aerospace Systems Engineering Training” data-recalc-dims=”1″ />

Learn About:

  • Systems engineering practices
  • Terms and methods
  • System life cycles used by INCOSE, DoD and NASA
  • Requirements generation
  • Trade studies
  • Architectural practices
  • Functional allocation
  • Verification/validation methods
  • Requirements Determination
  • Risk management
  • Evaluating specialty engineering contributions
  • Importance of integrated product and process teams

Aerospace systems engineering training is delivered in the form of hands-on training that includes labs, group activities, real-world case-studies, and hands-on workshops.

Audience

Aerospace systems engineering training is a 3-day course designed for:

  • Systems engineers
  • Aerospace engineers
  • Space program managers
  • Military avionic program managers
  • Space, military, and commercial product managers

Training Objectives

Upon the completion of Aerospace systems engineering training, the attendees are able to:

  • Understand the fundamentals of systems engineering
  • Describe avionic and aircraft systems
  • Define aerospace systems engineering processes
  • Describe the aerospace-associated programs life-cycle process
  • Identify aerospace systems components
  • Identify and provide systems requirements and management
  • Design the aerospace system
  • Integrate their aerospace specialty into systems engineering
  • Model aerospace system architecture
  • Apply verification and validation techniques
  • Apply the models and methods fit aerospace systems
  • Manage technical data
  • Manage and mitigate technical risks
  • Conducting crosscutting techniques
  • Manage and support required logistics
  • Understand data acquisition and control systems

Course Outline

Overview of Aerospace Systems Engineering

  • Systems engineering
  • Systems engineering components
  • System of systems engineering
  • Systems engineering objectives
  • Systems engineering discipline
  • Aerospace systems
  • NASA space systems
  • DoD System of Systems (SoS)

System Lifecycle Process

  • Researching
  • The V diagram
  • The project lifecycle process flow
  • Preliminary analysis
  • Definition
  • Development
  • Operations and maintenance
  • The budget cycle

Aerospace Systems Engineering Management Concerns

  • Coordinating balanced goals, work products, and organizations
  • The aerospace Systems Engineering Management Plan (SEMP)
  • The aerospace SEMP impact
  • The aerospace SEMP content
  • The aerospace SEMP development
  • The Work Breakdown Structure (WBS) vs. Product Breakdown Structure (PWBS)
  • WBS and PBS roles
  • WBS and PBS development tools
  • Common mistakes of WBS and PBS
  • Scheduling and scheduling impact
  • System schedule info and visual styles
  • Setting up a system schedule
  • Reporting methods
  • Resource leveling
  • Budgeting and resource management
  • Risk management
  • Various types of risks
  • Risk determination methods
  • Risk assessment methods
  • Risk reduction methods
  • Configuration Management
  • Baseline development
  • Configuration management strategies
  • Managing information
  • Reviews, audits, and control
  • Objectives
  • Overall rules
  • Main control accesses
  • Temporary review
  • Reporting the state and evaluation
  • Cost and schedule control measurement indices
  • Engineering performance evaluation
  • Aerospace systems engineering process metrics

Systems Assessment and Modeling Concerns in Aerospace

  • The trade study development
  • Regulating the trade study
  • Models and tools
  • Selecting the selection rule
  • Defining and modeling the budget
  • Life-Cycle expenses and other expenses evaluation
  • Monitoring life-cycle costs
  • Cost approximation
  • Defining and modeling the effectiveness
  • Measuring the system effectiveness methods
  • NASA system effectiveness evaluation
  • Accessibility and logistics supportability modeling
  • Probabilistic management of cost and effectiveness
  • Origins of uncertainty in models
  • Modeling methods for managing uncertainty

Integrating Aerospace Engineering Into the Systems Engineering Process

  • Aerospace engineering role
  • Reliability
  • Role of the reliability
  • Building consistent space-based systems
  • Reliability assessment tools and methods
  • Quality assurance
  • Role of the quality assurance engineer
  • Quality assurance tools and methods
  • Maintainability
  • Responsibility of the maintainability engineer
  • The system maintenance notion and maintenance plan
  • Designing maintainable space-based systems
  • Maintainability evaluation tools and methods
  • The avionic Integrated Logistics Support (ILS)
  • ILS components
  • Planning for ILS
  • ILS tools and methods
  • Continuous attainment and life-cycle support
  • Verification
  • Verification process
  • Verification planning
  • Qualification verification
  • Acceptance verification
  • Deployment verification
  • Functional and disposal verification
  • Production
  • Production engineer responsibilities
  • Tools and methods
  • Publicly accepted
  • Environmental impacts
  • Nuclear safety launch authorization
  • Planetary protection

Functional Assessment Methods

  • Functional methods
  • N2 diagrams
  • Timeline analysis

Functional Analysis

  • Boeing B-777: fly-by-wire flight control systems
  • Electrical flight control systems
  • Navigation and tracking Systems
  • Flight management systems
  • Synthetic vision
  • Communication systems
  • Satellite systems
  • Sensors systems

TONEX Case Study Sample: International Space Station (ISS)

  • Some background
  • ISS systems engineering elements
  • ISS systems engineering principals
  • ISS systems engineering accomplishments
  • ISS systems engineering challenges and failures
  • ISS systems engineering configuration management
  • ISS systems engineering quality assurance and maintenance

Request More Information

  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.