Print Friendly, PDF & Email

Whether you require a single course for a small group or an extensive training program for your entire workforce, on-site courses offer significant savings and convenience with the same quality hands-on instruction delivered in TONEX Training Education Centers around the world.

TONEX Training offers many training seminars in variety of subject areas including Telecom, Mobile and Cellular, Wireless, Engineering, Technology, IT, business, AI and Machine Learning, Systems Engineering, Defense, Tactical Data Links (TDL), Aerospace, Aviation, Space Engineering, Specification Writing, Power and Energy, Enterprise Architecture Management, Mini MBA, Finance, Logistics, Blockchain, Leadership, and Product/Project Management. We offer programs in our four state-of-the-art Executive Conference Centers and in 20 other cities in US and international locations including:

  • Atlanta, GA
  • Dallas, TX
  • Plano, TX
  • San Francisco, CA
  • Santa Clara, California
  • Santa Monica, California
  • Alexandria, Virginia
  • New York City, NY
  • Rome, Italy
  • Shanghai, China
  • London, UK
  • Munich, Germany
  • Stockholm, Sweden
  • Tokyo, Japan
  • Seoul, Korea
  • Hong Kong
  • Bangalore, India
  • Istanbul, Turkey
  • Dubai, UAE
Aug
24
Mon
Microgrid Certification Training | Microgrid Certificate @ Live on line and at TONEX Plano
Aug 24 @ 9:00 am – Aug 27 @ 4:00 pm
Print Friendly, PDF & Email

Microgrid Certification Training, Microgrid Certificate

Microgrid Certification Training curriculum is a leading edge certification and relevant to what is happening in the energy industry right now. Microgrid technology is an advanced technology developed in recent years as a critical competence of traditional power networks with reliable and efficient operation across a wide range of industries. The ability to deliver the technical information of smart grids to the right audience at the right time is a valuable skill, especially for those engaged in the field of power systems.

Microgrid Certification Training, Micro grid Certificate helps you to understand the microgrids, their operation and control as well as energy management principles applied to the microgrids. This certificate is divided into three main topics in microgrids which will help engineers and scientists to prepare themselves with the skills and required confidence to meet their organization’s needs or position themselves for their job responsibilities and promotions.  Our experts at TONEX will help you to understand the fundamental concepts of micro grids in order to tackle the real-world challenges. The micro gird certificate consists of four major topics:

  • Introduction to Microgrids
  • Microgrid operation and control
  • Energy management systems in Microgrids

The first part of the Microgrid Certification Training briefly introduces the concept of microgrids, background of renewable energy sources as the main components of a microgrid, history of renewable energy sources, advantages of microgrids and transmission system implemented in microgrids. Furthermore, you will be introduced to the basic per unit systems applied to microgrids, different types of microgrids, main operating modes in a microgrid such as: islanded mode and grid connected mode To add more details to the microgrids, you will learn the basics of solar panels, wind farms and energy storage systems as three main components of a microgrid in detail.

For each part, the operation basics, and main components will be briefly introduced and recent advancement will be taught. For example, main components of a wind farm generation unit such as: wind generators, wind turbines, towers, and foundations will be introduced and power converters implemented for each device will be discusses briefly. By the end of the first part, the audience are supposed to understand the basics of microgrid operation and should be able to understand the solar photovoltaic panels, wind farms, and battery energy storage systems.

You will also learn:

  • Transformers in microgrids
  • Different types of load in microgrids
  • Fault tolerance in microgrids
  • Cost benefits regarding microgrids
  • Hybrid microgrids
  • Micrgorid stability assessment and protection
  • Batteries in solar panels
  • Different types of PV modules
  • PV strings
  • Hybrid PV systems
  • Pulse width modulation techniques in microgrids
  • Power voltage curves for PV system
  • Power curves in wind turbines
  • Different types of wind turbines
  • Concept of pitch in wind farms
  • Series compensation in wind parks
  • Control of wind energy systems
  • Concept of energy storage systems
  • Applications of energy storage systems in microgrids
  • Conventional energy storage systems
  • Control of battery energy storage systems
  • Droop control in energy storage systems

The second part of the Microgrid Certification Training, Microgrid certificate training focuses on operation and control of microgrids from basic traditional approaches to the advanced hierarchical control of microgrids.  Firstly, basics of microgrid control will be introduced and different control modes in islanded mode and grid connected operation mode of the microgrid will be discussed. You will also learn the power elecrtronic converter control, classifications and operation, operation principles of wind farms, PV, energy storage, concept of offshore wind farms, and maximum power point tracking in microgrids. Next our instructors will focus on two separate operating modes in a microgrid (islanded and grid connect) and will describe the different control methodologies applied to each mode so far. For example, effect of voltage dips in islanded mode, active power control in islanded/grid connected mode, supporting the voltage and frequency in grid connected mode, parallel operation of converters in islanded/grid connected mode, concept of droop control in islanded mode, reactive power sharing in grid connected mode, and low voltage ride through capability of converters in grid connected mode are covered in the second part. Finally, the advanced control methodology named as hierarchical control of microgrid will be introduced and concepts of primary, secondary and tertiary controllers will be discussed in detail. You will also learn:

  • Voltage source converters in microgrids
  • Distributed loads in microgrids
  • Effect of electric vehicle charging in microgrid
  • Operation of storage units in islanded mode
  • Virtual synchronous generator effect in islanded microgrid
  • Power quality in islanded mode
  • Effect of LCL filter
  • Inner current loop and frequency control in islanded mode
  • Control of single converter in grid connected mode
  • Master and slave control of microgrids
  • Primary droop control
  • Secondary voltage and frequency control in microgrids
  • Primary control in wind farms, energy storages and PV
  • Power flow using tertiary control of microgrids
  • Frequency restoration
  • Peak shaving in microgrids
  • Demand response in microgrids
  • Unbalance compensation
  • Voltage harmonic reduction in microgrids

The third part of Microgrid Certification Training, Microgrid certificate training covers the energy management system (EMS) in microgrids. Firstly, the definitions and common terms will be provided to describe the concept of EMS. Then, the audience will be introduced with the main topics of EMS in microgrids such as: Data forecasting in microgrid EMS, DG scheduling, load dispatch, photovoltaic effect in EMS, effect of fuel cells in microgrid EMS, and optimization platform for microgrids.  After introduction part, our instructors will go into the details of EMS architecture and control in microgrids. You will learn the centralized and decentralized EMS techniques, market operator, local controllers, effect of real time data in centralized EMS, communication advancement in EMS, exchanging the price information between multiple DGs, advantages and disadvantages of microgrid EMS, forecasting the data for EMS, optimizing the power flow, optimizing the EMS policies and voltage and frequency control in short term microgrid EMS. Finally, the audience will be introduced to the challenges in the microgrid EMS such as renewable energy intermittency, network latency, and reliability of communications, two way communication challenges, and cyber security in centralized and decentralized microgrid EMS.  You will also learn:

  • Optimal dispatch in microgrid EMS
  • Monitoring devices for EMS
  • Load dispatch in microgrid EMS
  • Major vendors of EMS
  • Photovoltaic in EMS
  • Battery energy storage effect in microgrid EMS
  • Centralized and decentralized EMS in microgrids
  • Microgrid central controller (MGCC)
  • Communicating with neighbors in microgrid
  • Synchronization of microgrid through consensus objective
  • Data transfer limit between neighbors in microgrid
  • Human machine interface (HMI)
  • Real-time control effect in microgrid EMS
  • Optimization in microgrid EMS
  • Weather forecasting
  • Short term and long term EMS
  • Electricity market in EMS
  • Reliability of communications
  • Time synchronization
  • Openness of microgrid EMS
  • Reliability and cyber security of microgrid EMS

microgrid certification training<img class=”alignnone size-full wp-image-9025″ src=”https://tonex.wpenginepowered.com/wp-content/uploads/microgrid-certification-training.jpg” alt=”microgrid certification training” width=”395″ height=”128″ srcset=”https://tonex.wpenginepowered.com/wp-content/uploads/microgrid-certification-training.jpg 395w, https://tonex.wpenginepowered.com/wp-content/uploads/microgrid-certification-training-300×97.jpg 300w” sizes=”(max-width: 395px) 100vw, 395px” />

 

Audience

The Microgrid Certification Training, Microgrid certificate training is a 4-day course designed for:

  • All engineers who wants to learn, design, or operate the micro grids
  • Power traders to understand the modern microgrid technologies.
  • Independent system operator personnel.
  • Faculty members from academic institutes who want to teach the renewable energy or micro grid courses.
  • Investors and contractors who plan to make investments in smart grid industry.
  • Professionals in other energy industries.
  • Marketing people who need to know the background of the products they sell.
  • Electric utility personnel who recently started career in power systems or having new job responsibilities related to micro grids.
  • Technicians, operators, and maintenance personnel who are or will be working at green energy based companies.
  • Managers, accountants, and executives of power system industry.
  • Scientist or non-electrical engineers involved in micro grid related projects or proposals.
  • Graduate students seeking a professional career in micro grids

 

Microgrid Certification Training Objectives

Upon completion of the Microgrid Certification Training, Microgrid certificate training course, the attendees are able to:

  • Understand the concept of microgrids with its main components
  • Understand the operation of battery energy storage systems
  • Describe the main parts and operation principle of wind farms
  • Explain the operation and control of solar PV modules.
  • Describe the main power electronic converter types implemented in microgrids
  • Understand the hierarchical control of microgrids
  • Describe the differences between islanded mode and grid connected mode operation of microgrids
  • Explain the droop control methods implemented in microgrids
  • Understand the voltage and frequency control algorithms in microgrids
  • Describe the power control methods in islanded or grid connected mode operation.
  • Understand the energy management systems (EMS) in microgrids.
  • Tackle different challenges related to microgrid EMS.
  • Understand the EMS in centralized or decentralized microgrids.
  • Explain the effect of data forecasting in microgrid EMS

Microgrid Certification Training Course Agenda and Topics

Microgrid Certification Training, Microgrid certificate-Part1 (Introduction):

Concept of Microgrids

  • Traditional power network
  • Background and history of renewable energy sources
  • Trends for microgrids
  • Power electronic based devices
  • Common terms
  • Cower consumption in microgrids
  • Renewable generation units
  • Transformers in microgrids
  • Different types of loads in microgrids
  • Component of a microgrids
  • Per unit system
  • Transmission lines
  • DC and AC microgrids
  • Advantages of microgrids
  • Redundancy
  • Modularity
  • Fault tolerance
  • Efficiency in microgrids
  • Maintenance
  • Smaller size and cost benefits
  • Grid connected microgrids
  • Islanded mode operation of microgrids
  • Typical structure of microgrids
  • AC-DC hybrid microgrids
  • Microgrid configurations
  • Synchronization of AC sources in microgrids
  • Stability assessment of microgrids
  • Microgrid protection

Solar Panels and Photovoltaics in Microgrids

  • Why solar energy?
  • High photovoltaic (PV) penetration and utility distribution systems
  • Solar system owners
  • Advanced distribution system and solar panels
  • Main components of a PV system
  • PV module or solar arrays
  • Battery
  • Charge regulator
  • Inverter
  • Back-up generator
  • DC/AC loads
  • Different types of PV modules
  • Main elements of a PV module selection
  • PV strings
  • Connection of modules, series and parallel
  • Lead-acid batteries in PV systems
  • Nickel Cadmium batteries in PV systems
  • Standalone PV system
  • Grid connected PV system
  • Hybrid PV system
  • PV system design considerations
  • Costs in PV systems
  • Installation and operation principals of PV systems
  • PV system control
  • Maximum power point tracking
  • Proportional resonance controller
  • Pulse width modulation unit
  • Current controller
  • Phase locked loop in PV systems
  • Voltage current characteristics of PV modules
  • Power curves for PV system
  • Incremental conductance control
  • Perturb and observe control in PV system

Wind Farms in Microgrids

  • Wind energy systems
  • Wind farm scales
  • Grid integration of wind farms
  • Economics of wind farms
  • Fundamentals of wind power
  • Kinetic energy in wind power
  • Efficiency in extracting the wind power
  • Power curves in wind turbines
  • Different types of wind turbines
  • Doubly fed induction generators (DFIG)
  • Permanent magnet based wind farms
  • Main components of a wind farms
  • Wind generator
  • Wind turbine
  • Wind turbine blades
  • Horizontal and vertical axis wind farms
  • Tower
  • Drive train
  • Electronics and control
  • Pitch
  • Brake
  • Cooling system
  • Foundation of wind farms
  • Control of wind farms
  • Transmission lines
  • Concept of reactive power compensation in wind farms
  • Oscillations in wind farms
  • Control of drivetrain speed
  • Blade regulation control
  • Stalling and pitch angle control
  • Active and reactive power control in DFIGs
  • Wind forecasting
  • Future technology developments of wind farms
  • Cost of wind energy

Battery Energy Storage Systems in Microgrids

  • Concept of energy storage systems
  • Emerging needs for energy storages
  • Effect of energy storages in utility, customers and generations
  • Classifications of energy storage systems
  • Economics of energy storages in market
  • Energy storage applications in current grids
  • Limiting factors in energy storage implementations
  • Mechanical storage systems
  • Electromechanical storage systems
  • Chemical energy storages
  • Thermal storage systems
  • Conventional battery technology
  • Capacitors
  • Superconducting magnetic energy storage
  • Contingency reserves by energy storages
  • Reactive support and voltage control
  • Black start capability of energy storages
  • Congestion management by energy storages in microgrids
  • Demand management
  • Detailed models of energy storage systems
  • Different sizes of energy storage system for microgrid applications
  • Applications of energy storages in microgrids
  • Grid operational support by energy storages
  • Power quality and reliability improvements by energy storages
  • Concept and power and energy in storage systems
  • Discharging principles
  • Short term applications of energy storages in microgrids
  • Control of energy storage systems
  • Droop control
  • Active and reactive power control in energy storages
  • State of charge (SOC) control
  • Optimization techniques by energy storage system control

 

Microgrid Certification Training, Microgrid certificate-Part2 (Control and Operation):

Basics of Microgrid Control

  • Types of operation of microgrids
  • Control in grid connected mode
  • Control in islanded mode
  • Power electronic based equipments in microgrids
  • Power electronic converters
  • Power electronic switches
  • Classification of power electronic converters implemented in microgrids
  • Voltage source converters in microgrids
  • Multilevel voltage source converters
  • Pulse width modulation techniques
  • Operation principles of PV panel system
  • Operation principles of wind turbines
  • Effect of UPS in microgrid systems
  • Distributed loads in microgrids
  • Effect of virtual inertias in microgrids
  • Integration of distributed generation to shape smart grids
  • Necessity of maximum power point trackers
  • Operation of storage units in islanded mode
  • Effect of electric vehicle charging stations in microgrids
  • Wind turbine generations, offshore and on shore

Islanded Mode Operation of Microgrids

  • Islanded mode operation basics
  • Effect of long-term voltage dips or faults
  • Importing and exporting the active and reactive power
  • Controlling the current and voltage in converters
  • Supporting the frequency and voltage
  • Virtual synchronous generator effect
  • Blackouts by main grids
  • Voltage and frequency management in islanded mode operation
  • Supply and demand balancing effect
  • Power quality in islanded mode operation
  • Hierarchy of loads in islanded mode
  • Concept of point of common coupling
  • Control of a voltage source converter in islanded mode
  • Effect of LCL filter
  • Direct and quadratic (d-q) axis based control
  • Voltage control loop
  • Effect of inner current loop in islanded mode
  • Parallel converters in islanded mode operation
  • Effect of master/slave control in islanded mode
  • Frequency droop control in parallel operation
  • Voltage droop control in parallel operation

Grid Connected Mode Operation of Microgrids

  • Basics of grid connected operation
  • Control of a single converter in grid connected mode
  • Effect of parallel converters in control
  • Concept of master and slave control
  • Inner current loop and voltage control in grid connected mode
  • Droop control strategy of grid connected converters
  • Active power sharing among converters through droop
  • Reactive power sharing droop
  • Concept of inertia in microgrids
  • Effect of synchronization through an inverter
  • An inverter working as a synchronous generator
  • Park transformation in droop control of inverters in grid connected mode
  • Low voltage ride through capability of voltage source converters in grid connected mode

Hierarchical Control of Microgrids

  • Primary control loop
  • Secondary control in microgrids
  • Tertiary control
  • Centralized control of microgrids
  • Decentralized control of microgrids
  • Primary control in wind energy systems
  • Primary control in PV systems
  • Primary control in energy storages
  • Secondary control in wind energy systems
  • Secondary control in PV systems
  • Secondary control in energy storages
  • Calculating power flow for tertiary control
  • SOC management control for energy storage system
  • Cooperative synchronization of multiple energy storage units
  • Secondary control in islanded microgrids
  • Frequency restorations
  • Power quality improvement
  • Energy management systems for load shedding
  • Load shedding
  • Peak shaving control
  • Synchronization of the microgrid with grid
  • Optimization and upper level control as a tertiary control loop
  • Low voltage ride through as a tertiary control loop
  • Islanding detection
  • Microgrids interconnections
  • Harmonic compensation
  • Voltage harmonic reduction in grid connected mode
  • Voltage harmonic reduction in islanded mode
  • Unbalance compensation in microgrids
  • Concept of unbalance in microgrids
  • Sources for unbalances
  • Modeling the unbalance effect
  • Designing the compensation algorithms
Jan
25
Mon
RF Training Fundamentals @ Live on Line
Jan 25 @ 9:00 am – Jan 26 @ 4:00 pm
Mar
8
Mon
EMI/EMC Training @ Live online
Mar 8 @ 9:00 am – Mar 10 @ 4:00 pm
Print Friendly, PDF & Email

EMI/EMC Training Course by TONEX

Applied Electromagnetic Compatibility (EMC) and Electromagnetic Interference (EMI) training course serves as a technical program to electromagnetic compatibility (EMC) and electromagnetic interference (EMI). It is a technical overview of many topics.

Tonex Applied EMC/EMI course is applicable to professional engineers and technicians practicing in EMC fields to include bonding, grounding, shielding, EMI prediction, EMI analysis, conducted and radiated interference, lightning protection and more.

Learn about the requirements that commercial and military electronic systems must meet to get certified. Master techniques that can be used to protect systems against these threats. Explore unconventional high power EM threats, including nuclear electromagnetic pulse and high power microwave weapons (optional topics)

In a nutshell, Engineers know the math and the physics of EMC. Technicians know the instruments and test setups. Engineers need good writing and verbal skills. Technicians need to know the pitfalls of real measurements. All applicants have to be competent in the fundamentals, i.e., coupling, filters, shielding, etc. as well as the specifications which apply to their particular specialty.

Aug
30
Mon
Link 16 and MIDS Training Bootcamp @ Live online and Tonex Plano
Aug 30 @ 9:00 am – Sep 2 @ 4:00 pm
Print Friendly, PDF & Email

Link 16 and MIDS Training Bootcamp

Link 16 and MIDS Training Bootcamp is a 5-day special program provides an overview  of the concepts of Tactical Data Links and Link 16 and  MIDS-LVT terminals, their functions and operations, and maintenance as a Link 16 Tactical Data Link Terminal.

TONEX offers a variety of TDL, Link 16 and MIDS training courses  to meet your applications of Link 16/MIDS, and TDL needs. Link 16 and MIDS training courses are fully customized to meet your specific technology, operation, mission or strategy MIDS Specifications and Documentation

Link 16 and MIDS Training Bootcamp introduces the attendees to the various Link 16 will learn Link 16 and MIDS-LVT terminals functions, processes, capabilities, planning, operations and management. Link 16 and MIDS Training Bootcamp is a vendor-neutral course but still covers many aspects of the commercial terminals offered by different vendors.

Vendor-neutral Link 16 and MIDS training, of course, can help your organization embrace the best practices in Link 16 and Link 16 MIDS terminals in a way that vendor-specific training probably can’t. Link 16 and MIDS Terminal vendor-neutral training can also help you build the expertise your organization needs to evaluate Link 16 MIDS terminals and solution providers and ultimately avoid vendor lock-in.

Course Objectives

Upon completion of this course, the attendees are be able to:

  • Describe principles behind Tactical Data Links (TDL) and Link 16
  • Describe what Link 16 is and how operates as a TDL
  • Describe the difference between Link 16 with other TDLs and related technologies and protocols such as Link 11, Link 22, SADIL, JREAP and VMF
  • List Link 16 protocol, architecture and functional characteristics
  • Describe Link 16  functions and applications
  • Describe basics of the Link 16 protocol, Link 16 network and Link 16 terminal
  • Define Link 16 terminal requirements architecture and design
  • Explain Link 16 network design and implementation using MIDS
  • List MIDS features and benefits
  • Describe principles behind MIDS and MIDS-LVT terminals
  • Describe Link 16 MIDS terminals software hardware
  • Describe operation of different types of MIDS-LVT terminals
  • Describe concepts behind MIDS-LVT (1) and MIDS-LVT (2) terminals
  • Describe operational procedures behind Link 16 MIDS terminals

Course Topics

Introduction to Tactical Data Links

  • Introduction to Network Centric Warfare
  • Overview of Tactical Data Link (TDLs) Solutions
  • Introduction to Link 16
  • Introduction to Multifunctional Information  Distribution System (MIDS)
  • Overview of MIDS/Low Volume Terminals (LVT)

Overview of Link 16

  • Link 16 as a TDL
  • Link 16 Networking
  • Link  16 Benefits and Features
  • Link 16  Operation
  • Overview of Link 16 Architecture
  • Link 16 Terminals, Interfaces and Functions
  • Link 16 Network Management
  • Link 16 Terminals and Software
  • Link 16 Terminals: JTIDS, MIDS and JTRS
  • Operation of the MIDS, MIDS JTRS
  • Link 16 Terminal Communications Interfaces
  • Link 16 Terminal connecting to  X.25, 1553, and Ethernet interfaces
  • Link 16 Troubleshooting and Monitoring
  • Link 16 Mission Planning
  • Link 16 OPTASK Link
  • Link 16 Network Planning
  • Link 16/MIDS Operations
  • Link 16 Network Management
  • Link 16 Network Design
  • Link 16 System Integration

Link 16 Communication Protocol and Messages

  • Features and Functions of the Link 16 Network
  • Link 16 System Characteristics
  • Link 16 Terminal Waveform and Waveform Generation
  • Link 16 Spectrum
  • Link 16 Frequencies
  • Time Division Multiple Access
  • Link 16 TDMA Features
  • Link-16 Time Slots and Time Slot Assignments
  • Link 16 and Pulses
  • Link 16 Networks / Nets
  • Link 16 Network Access Modes
  • Link 16 Message Packing
  • Link 16 Terminal Synchronization
  • Link 16 Network Time
  • Link 16 Interference Protection Features (IPF)
  • Link 16 Time Slot Duty Factor (TSDF)
  • Network Roles and Functions
  • Role of  Different Types of Network Relays
  • Link 16 Gateways
  • Joint Range Extension Applications Protocol (JREAP)
  • Link 16 Network Participation Groups (NPG)
  • The Link 16 J-series Message
  • Link 16 Message Types
  • Network Entry
  • Precise Participant Location and Identification (PPLI)
  • Multinetting
  • Range Extension Technique
  • Link 16 Network Roles
  • Link 16 Terminal Navigation
  • Link 16 Terminals
  • Link 16 Terminal Restrictions

Overview of Multifunctional Information  Distribution System (MIDS)

  • MIDS Terminals
  •  Class1, Class2, URC-138, MIDS, MIDS, JTRS, and SFF
  • Multifunctional Information Distribution System
  • MIDS Terminals
  • Link 16 requirements
  • US Forces and  Coalition partners
  • MIDS Terminals
  • Inside a MIDS Terminal
  • JTIDS, MIDS and JTRS
  • MIDS-JTRS
  • Multifunctional Information Distribution System Joint Tactical Radio System (MIDS-J)
  • Multifunctional Information Distribution System on Ship (MIDS-On Ship)
  • Multifunctional Information Distribution System: Fighter Data Link (MIDS-FDL)
  • Multifunctional Information Distribution System: Low Volume Terminal (MIDS-LVT(1))
  • Multifunctional Information Distribution System-Low Volume Terminal 2/11 (MIDS-LVT 2/11)

Overview of Multifunctional Information  Distribution System (MIDS) Low Volume Terminals (LVT)

  • Introduction to MIDS-LVT
  • MIDS LVT Features
  • Security and Jam Resistant Connectivity
  • Distributed Network
  • Range Coverage
  • Relative Position Data Accuracy
  • Overview of MIDS-LVT Terminal Products and Solutions
  • MIDS-LVT Terminal Operations
  • MIDS-LVT Initialization and Functions
  • MIDS-LVT Software and Hardware
  • MIDS-LVT Support and Host Equipment
  • Radiation Restrictions and Frequency Management
  • Operation,  testing, troubleshooting of Link 16 terminals
  • MIDS-LVT Flexible, open-architecture designs
  • Critical airborne, ground, and maritime link
  • Coordination of forces and situational awareness in battlefield operations
  • The reliability of the MIDS LVT
  • MIDS LVT Architecture and Components
  • Line Replaceable Units (LRUs)
  • Receiver/Transmitter (R/T)
  • Multifunctional Information Distribution System: Low Volume Terminal (MIDS-LVT(1))
  • Link 16 interoperability
  • TADIL-J and IJMS
  • Specifications
  • Physical Specs
  • Power Requirements
  • Power modes
  • Voice channels
  • 2.4 Kbps LPC-10 and 16 Kbps CVSD
  • Host interface
  • MIL-STD-1553, Ethernet, PhEN3910 and X.25
  • Weapon Enabled Terminals

Multifunctional Information Distribution System-Low Volume Terminal 2/11 (MIDS-LVT 2/11)

  • Pseudo-random frequency hopping
  • Specifications
  • Physical Specs
  • Power Requirements
Apr
11
Mon
Satellite Communications Training | Crash Course @ Live online and Tonex Nashville,TN
Apr 11 @ 9:00 am – Apr 14 @ 3:00 pm
Print Friendly, PDF & Email

Satellite Communications Training Crash Course

Satellite Communications Training crash course focuses on satellite communications  payloads, systems engineering and architecture of satellite systems including application requirements such as digital video and broadband media, mobile services, IP networking and UDP/TCP/IP services, concept of operations, identifying end-to-end satellite payload requirements and constellation.

This popular and intensive Satellite Communications Training crash course provides attendees with an in-depth knowledge of satellite communication principals and techniques and key emerging technologies.

CSSSP Certification by Tonex

Satellite communications with earth reflecting in solar panels ( Elements of this 3d image furnished by NASA)

Who Should Attend

The course is ideal for engineers and managers involved in Satellite Communications planning, architecture, design, implementation and operation.

Course Objectives

Upon completion of this course, the attendees will:

  • Learn the basic introduction to RF characteristics and modelling tools used to calculate spurious signals, inter-modulation levels, phase noise, Bit Error Rate and RF interference
  • Gain familiarity with merits such as Gain to Noise Temperature Ratio (G/T)
    Provide an in-depth knowledge of satellite communication systems planning, design, operation and maintenance.
  • Gain familiarity with propagation, link budget, RF planning, system tradeoffs multiple access, modulation and coding schemes
  • Gain familiarity with system architecture of satellite communications payloads
  • Learn the basic aspects of satellite performance
  • Gain familiarity with repeater design and different repeater components
  • Gain familiarity with key communications parameters
  • Basic introduction of speech and video coding, satellite networking, TCP/IP and other trends

Course Topics

Introduction

  • Different types of satellite orbits and payloads
  • Geostationary Earth Orbit (GEO) system
  • Low Earth Orbit (LEO) system
  • Medium Earth Orbit (MEO) system
  • Major categories of satellite services defined by ITU
  • Broadcasting Satellite Service
  • Mobile Satellite Service
  • Fixed Satellite Service
  • Satellite communications systems engineering principals
  • Digital Direct-to-Home (DTH) TV
  • VSAT services
  • 2-way interactive services
  • Mobile communications technologies
  • Service and performance requirements

Planning and Design (Earth & Planetary)

  • Satellite constellations
  • Satellite orbits
  • Orbital mechanics basics
  • Satellite coverage
  • Space environment orbit and attitude determination and analysis
  • Propulsion system
  • Spacecraft operations and automation
  • Spacecraft navigation
  • Coverage and communication analysis

Satellite Communications Principles

  • Terrestrial Systems
  • Satellite communication systems
  • Satellite communication system architecture
  • Satellite access
  • Radio link reliability
  • Doppler effect
  • Satellite constellations
  • Spot beams
  • Radio Link
  • Spectrum issues
  • Spectrum sharing methods
  • Propagation characteristics
  • General propagation characteristics
  • Analog and digital Modulation
  • Digital modulation and Coding
  • Satellite RF Link
  • Multiple access principles
  • Earth Stations
  • Antennas
  • Satellite system performance
  • Link budget analysis
  • System tradeoffs

System Specification and Requirement Writing

  • Spacecraft subsystems areas
  • Communications payload, Altitude Control, Propulsion, Electrical Power and Distribution, Payload, Thermal, Telemetry, Tracking and Command, and Orbit Control
  • Satellite Radio building blocks
  • Satellite ground segment
  • Earth stations subsystem
  • Various types of satellite payloads
  • Satellite transponders
  • Bent-pipe Satellites
  • Key technology advancements in Satellite Communications (SATCOM) payloads  for telecommunications services
  • Different types of orbits for satellites
  • International regulations (ITU-T) governing the frequency planning and coordination of the diverse satellite networks

Requirement analysis  of the Satellite Payload

  • Capabilities of different repeater components
  • Assessment techniques for performance of all major building blocks including repeaters, antenna system, and tracking
  • Critical subsystem and system design concepts such as power budget, loss, group delay, IM (Intermodulation) distortion, digital impairments, cross-polarization, adjacent satellite and channel interference for
  • Design principles and performance budgets for system elements such as receivers, phased-array antennas, multiplexers, amplifiers, analog and digital processors, reflector, feeds and other passive and active components
  • System verification of payload and ground segment performance
  • Evaluation of subsystem / system performance, and guidelines for overseeing development

Key Payload Communications Parameters

  • Gain and phase variation with frequency
  • Phase Noise
  • Frequency Stability
  • Spurious signals from frequency converter
  • Self-interference products
  • Passive Intermodulation products
  • Noise figure and payload performance budgets
  • Engineering specifications and techniques for payload compatibility with the satellite bus
  • Communications satellite’s transponder
  • Communications channel between the receiving and the transmitting antennas

Transponder System Design and Architecture

  • System tradeoffs
  • RF tradeoffs (RF power, EIRP, G/T)
  • Input band limiting device (a band pass filter)
  • Input low-noise amplifier (LNA)
  • Frequency translator
  • Oscillator and a frequency mixer
  • Output band pass filter
  • Power amplifier
  • Traveling-wave tube
  • Solid state amplifiers
  • Design elements and specifications for the satellite communications payload
  • “Bent pipe” principle
  • Bent-pipe repeater subsystem
  • Regenerated mode
  • Regenerated and bent-pipe mode
  • Bent-pipe topology
  • On-board processing
  • Demodulated, decoded, re-encoded and modulated signals

Communications Payload Performance Management

  • Performance and capacity planning
  • Payload system Tradeoffs
  • Bent-pipe repeater analysis and design
  • Antenna Design and Performance
  • Link budget
  • On-board Digital processor
  • A/D and D/A conversion
  • DSP (digital signal processing)
  • Multiple access technologies
  • Principles behind FDMA, TDMA, CDMA
  • Demodulation and remodulation
  • Multiplexing
  • Multi-beam Antennas
  • RF Interference
  • Spectrum Management
Apr
25
Mon
RF Engineering Training Boot Camp @ Live on-line
Apr 25 @ 9:00 am – Apr 28 @ 4:00 pm
Print Friendly, PDF & Email

RF Engineering Training Boot Camp is the unique answer to your RF planning, design and engineering in any wireless networks needs.

RF Engineering Training, also known as Radio Frequency Engineering, is a subset of electrical engineering that deals with devices which are designed to operate in the Radio Frequency spectrum: range of about 3 kHz up to 300 GHz.

RF Engineering Training covers all aspects of Radio Frequency Engineering, a subset of electrical engineering. RF Engineering training will incorporate theory and practices to illustrate the role of RF into almost everything that transmits or receives a radio wave which includes : traditional cellular networks such as GSM, CDMA, UMTS.HSPA+, 4 LTE, LTE-Advanced, 5G NR, mmWave, Wi-Fi, Bluetooth, Zigbee, Satellite Communications,  VSAT, Two-way radio, and Public Safety Solutions.

RF Engineers are a part of a highly specialized field and are an integral part of wireless solutions. Their expertise is needed to design effective and reliable solutions to produce quality results, an in-depth knowledge of math, physics and general electronics theory is required.

RF Engineers are specialists in their respective field and assist in both the planning, design, implementation, and maintenance of different RF solutions.

To produce quality results in RF Engineering Training bootcamp, the program covers an in-depth knowledge of math, physics, general electronics theory as well as specialized modules in propagation and microstrip design may be required.

Topics Covered in RF Engineering Training Bootcamp – Crash Course:

  • RF Theory
  • RF Engineering Principles
  • Modulation
  • Antenna Theory
  • Interference Analysis
  • Link Design
  • Principles of Noise and Interference
  • Principles of Jamming
  • Communications Control and Jamming Theory of Operation
  • RF System Specifications
  • RF Surveys and Planning
  • Radio Wave Propagation and Modeling
  • Frequency Planning
  • Traffic Dimensioning
  • Cell Planning Principals
  • Coverage Analysis
  • RF Optimization
  • RF Benchmarking
  • RF Performance
  • RF Safety
  • RF Simulation
  • RF Testing
  • RF System Integration and Measurements
  • Planning of  Radio Networks
  • Advanced Topics in Cell Planning
  • Advanced Topics in RF Planning and Architecture
  • Voice and Data Traffic Engineering
  • RAN Optimization