Length: 2 Days
Print Friendly, PDF & Email

Introductions to CubeSat

The CubeSat has very quickly become the “poster child” of the New Space Industry.

CubeSats are miniature satellites that have been used exclusively in low Earth orbit for 15 years, and are now being used for interplanetary missions as well.

From the original concept as an educational tool for university students, it has evolved, spread, and been adopted by emerging space nations, new industries, nonprofits, space agencies, and traditional aerospace and military companies.

The burgeoning CubeSat community can take advantage of a variety of payloads and mission applications that CubeSats can support at economically attractive costs.

In fact, launching a conventional satellite into space can cost anywhere between $10 million and $400 million, depending on the vehicle used. A CubeSat launch is around $40,000.

CubeSats also require shorter development times. This is key because analysts insist the new Space Age is about the ability to start projects quickly, without waiting too long. A conventional satellite requires very long development times, between five and 15 years. On the other hand, the first CubeSat of a constellation can be in space within eight months, and if we are talking about replicas, this wait is reduced to only two months.

CubeSats also tend to incorporate more modern, up-to-date technology. It’s no secret that technological advances are moving at a dizzying speed. It is not difficult to find functioning satellites that use technology from more than 25 years ago.

CubeSats can be flown in swarms, capturing simultaneous, multipoint measurements with identical instruments across a large area. Sampling entire physical systems in this way would drive forward our ability to understand the space environment around us, in the same way multiple weather sensors help us understand global weather systems.

The thing about CubeSats that really stands out is their ability to carry out diverse missions in space.

For example, CubeSats can be ejected from the International Space Station (up to six at a time), deployed directly from a rocket or shot out of a spacecraft, depending on the mission.

Many feel that CubeSats are transforming the future of space discovery and education. Scientists, like those from NASA, are increasingly using CubeSats to look out at space — searching for water ice on the dark side of the moon, hunting for extrasolar planets that might be habitable, and exploring deep space. And they’re also looking back at Earth — and assisting farmers in preventing crop damage and increasing yield.

CubeSats further provide a complementary connectivity solution to the pervasive Internet of Things (IoT) networks, leading to a globally connected cyber-physical system. Several future research directions for CubeSat communications, including Internet of space things, low-power long-range networks, and machine learning for CubeSat resource allocation.

Introductions to CubeSat Course by Tonex

Introductions to CubeSat is a 2-day covering the basic concepts and processes for
CubeSat analysis, design and developments. Participants will learn about the CubeSats or miniature satellites that have been used exclusively in Low Earth Orbit (LEO), and can be used for exploring and interplanetary missions. In the beginning,    however, they were commonly used in low Earth orbit for applications such as remote sensing or communications.

Nanosatellites are loosely defined as any satellite weighing less than 10 kilograms. The basic design of a CubeSat is a 10-centimeter (4-inch) cube with a mass of less than 1.33 kilograms (2.93 lbs.). CubeSats can also be designed to encompass two, three or six 10-centimeter units for more complicated missions. CubeSats shall also comply with a series of specific criteria that control factors such as their shape, size and weight.

Two of the 28 Dove cubesats that make up Planet Lab's "Flock 1" constellation are seen deploying into orbit from the International Space Station on Feb. 11, 2014.

28 Dove CubeSats part of Planet Lab’s “Flock 1” constellation deployed into orbit from the International Space Station (ISS) on Feb. 11, 2014.
(Image: © NASA)
What is a Nanosatellite?

The standard CubeSat unit, a cube-shaped structure measuring 10x10x10 centimetres, has with a mass of somewhere between 1 and 1.33 kg (AKA as 1U). This modular unit is now multiplied and larger nanosatellites such (1.5U, 2U, 3U or 6U).

Course Topics

Fundamentals of CubeSats

  • CubeSats Use Cases
  • Satellite Types
  • Satellite Types and the Mass
  • Large satellites: More than 1,000 kg
  • Medium-sized satellites: 500-1,000 kg
  • Small satellites
  • Minisatellite: 100-500 kg
  • Microsatellite: 10-100 kg
  • Nanosatellite: 1-10 kg
  • Picosatellite: Less than 1 kg
  • CubeSat Launch Initiatives
  • CubeSats System Survey
  • Mission Models
  • Operationally Responsive Space (ORS) Rideshare
  • National Reconnaissance Office (NRO) Rideshare
  • International Space Station (ISS) Deployment Mission Model
  • Commercial Launch Services
  • Structure
  • Computing
  • Attitude control
  • Propulsion
  • Power
  • Telecommunications
  • RF
  • Antennas
  • Antennas
  • Thermal management

CubeSat Architecture and Design

  • CubeSat Reference Architecture CubeSats Systems Engineering Design Process
  • Model Based Systems Engineering (MBSE) applied to CubeSats
  • System Inputs
  • Desired System Outputs
  • System Level Architecture
  • CubeSat RF Engineering
  • Antennas
  • Communication Protocols
  • Launch Vehicles
  • CubeSat Dispenser Systems
  • 3U Dispensers
  • 6U Dispensers
  • Launch Vehicles Rockets
  • Development Process Overview
  • Ground Station Design, Development, and Testing
  • CubeSat Software Design and Implementation
  • CubeSat Testing
  • CubeSat Hardware Fabrication and Testing
  • CubeSat Software Testing
  • Mission Readiness Reviews
  • CubeSat-to-Dispenser Integration and Testing
  • Mission Operations

CubeSat Design Specifications (CDS)        

  • Range Safety Requirements
  • Licensing Procedures
  • Radio Frequency (RF) Licensing
  • Remote Sensing
  • Flight Certification
  • Orbital Debris Mitigation Compliance
  • Transmitter Surveys
  • CubeSat Components
  • Materials List
  • Environment Testing (Vibration/Shock)
  • 693 Thermal Vacuum Bakeout Testing
  • Compliance
  • Safety and Reliability
  • CubeSat Verification and Validation (V&V)
  • Acceptance Checklists
  • Technical Reference Documents for CubeSat
  • Requirements Verification
  • CubeSat Cybersecurity Attacks and Mitigation

CubeSat Cybersecurity

  • Space Cybersecurity
  • CubeSat Networking, Systems, Technologies, Databases
  • CubeSat Defensive and Offensive Cybersecurity
  • CubeSats Vulnerabilities and Hackers
  • Securing Satellites and CubeSats
  • CubeSat Threat Models and Mitigation

CubeSat Case Study

  • Business Case for a CubeSat-based Earth Imaging Constellation
  • Tools to to Build a CubeSat
  • CubeSat cost and Components

 

Introductions to CubeSat

Request More Information

Please enter contact information followed by your questions, comments and/or request(s):
  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.

Request More Information

  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.