When:
June 10, 2019 @ 9:00 am – June 11, 2019 @ 4:00 pm
2019-06-10T09:00:00-05:00
2019-06-11T16:00:00-05:00
Where:
Nashville, TN
Cost:
1899.00
Contact:
Howard Gottlieb
Print Friendly, PDF & Email

Why choose TONEX for your RF Safety Training?

RF Safety Training covers RF theory of operations, regulations and RF standards, types of radiation and field effect, Maximum Permissible Exposure (MPE) at RF sites, RF safety signs, hazard assessment, Lock out – Tag out procedures and Personal Protective equipment.

RF Safety training is for anyone who may encounter RF fields or RF exposure, and is required training for employees and sub-contractors in the telecommunications industry.

RF Safety Training

RF safety training highlights: Radiofrequency (RF) and microwave (MW) radiation are electromagnetic radiation in the frequency ranges 3 kilohertz (kHz) – 300 Megahertz (MHz), and 300 MHz – 300 gigahertz (GHz), respectively. Research continues on possible biological effects of exposure to RF/MW radiation from radios, cellular phones, the processing and cooking of foods, heat sealers, vinyl welders, high frequency welders, induction heaters, flow solder machines, communications transmitters, radar transmitters, ion implant equipment, microwave drying equipment, sputtering equipment and glue curing.

WHAT ARE “RADIOFREQUENCY” AND MICROWAVE RADIATION?

Electromagnetic radiation consists of waves of electric and magnetic energy moving together (i.e., radiating) through space at the speed of light.  Taken together, all forms of electromagnetic energy are referred to as the electromagnetic “spectrum.”  Radio waves and microwaves emitted by transmitting antennas are one form of electromagnetic energy.  They are collectively referred to as “radiofrequency” or “RF” energy or radiation.  Note that the term “radiation” does not mean “radioactive.”  Often, the terms “electromagnetic field” or “radiofrequency field” may be used to indicate the presence of electromagnetic or RF energy.

The RF waves emanating from an antenna are generated by the movement of electrical charges in the antenna.  Electromagnetic waves can be characterized by a wavelength and a frequency.  The wavelength is the distance covered by one complete cycle of the electromagnetic wave, while the frequency is the number of electromagnetic waves passing a given point in one second.  The frequency of an RF signal is usually expressed in terms of a unit called the “hertz” (abbreviated “Hz”).  One Hz equals one cycle per second.  One megahertz (“MHz”) equals one million cycles per second.

Different forms of electromagnetic energy are categorized by their wavelengths and frequencies.  The RF part of the electromagnetic spectrum is generally defined as that part of the spectrum where electromagnetic waves have frequencies in the range of about 3 kilohertz (3 kHz) to 300 gigahertz (300 GHz).  Microwaves are a specific category of radio waves that can be loosely defined as radiofrequency energy at frequencies ranging from about 1 GHz upward.

WHAT IS NON-IONIZING RADIATION?

“Ionization” is a process by which electrons are stripped from atoms and molecules.  This process can produce molecular changes that can lead to damage in biological tissue, including effects on DNA, the genetic material of living organisms.  This process requires interaction with high levels of electromagnetic energy.  Those types of electromagnetic radiation with enough energy to ionize biological material include X-radiation and gamma radiation.  Therefore, X-rays and gamma rays are examples of ionizing radiation.

The energy levels associated with RF and microwave radiation, on the other hand, are not great enough to cause the ionization of atoms and molecules, and RF energy is, therefore, is a type of non-ionizing radiation.  Other types of non-ionizing radiation include visible and infrared light.  Often the term “radiation” is used, colloquially, to imply that ionizing radiation (radioactivity), such as that associated with nuclear power plants, is present.  Ionizing radiation should not be confused with the lower-energy, non-ionizing radiation with respect to possible biological effects, since the mechanisms of action are quite different.

Attendees attending this class will receive a completion certificate and card complying with OSHA reporting requirements in 29 CFR1910.268.

Some Interesting FCC Links on RF Safety

Anyone who may be at risk to RF exposure RF Site operators and managers Managers and supervisors Building and land owners, managers, engineers and technicians of telecommunication sites

 

Upon completion of the RF safety training course, the attendees will learn about:

  • RF Theory of Operation
  • RF Site Safety and the Law
  • Type of RF Radiation
  • Introduction to Antennas and RF sources
  • Analyzing Maximum Permissible Exposure – MPE
  • How to begin Hazard assessment
  • Available Personal Protective Equipment – PPE
  • RF Safety Models

RF Theory of RF Operations

  • Radiofrequency Energy
  • Radiofrequency and Microwave
  • Radiation Standards
  • Health Effects
  • Hazard Locations and Solutions
  • Evaluating RF and Microwave Exposure
  • RF and Microwave Safety Programs
  • Electromagnetic Fields
  • RF fields and their application
  • Cell Phones
  • Wireless Devices and Health Concerns
  • Towers
  • Cellular and PCS sites
  • Human Exposure from Vehicle Mounted Antennas
  • Cellular Telephone Specific Absorption Rate (SAR)
  • RF Biological Hazard Issues
  • Public Exposure (“Uncontrolled”)
  • Occupational Exposure (“Controlled”)
  • Tonex 10 RF Safety Rules
  • RF Exposure Surveys Perform on-site survey characterize area with multiple RF sources
  • Measurement equipment and probes Microwave to 28 or 38 GHz
  • Low Band Land Mobile to 30 MHz
  • AM Broadcast around 1.0 MHz
  • Exposure as Percentage of MPE Exposure as Percentage of MPE
  • How to read Site-Specific RF Compliance Guidelines
  • Tips on Using Personal Safety Monitors
  • Tips on using RF Protective Suits

RF Safety Regulations and Standards

  • Notice of Proposed Rulemaking dated June 6, 2003, proposing amendments to FCC rules governing Exposure to Radiofrequency Electromagnetic Fields, 47 CFR parts 1, 2, and 95.
  • FCC’s Office of Engineering Technology (OET) Bulletin 65, Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields.
  • FCC’s Docket File ET93-62, information on FCC Rules
  • FCC RF Exposure Regulations First Memorandum Opinion
  • FCC RF Exposure Regulations Second Memorandum Order and Opinion 97-303
  • NEPA, FCC and OSHA RF Compliance
  • The 1997 FCC Regulation, IEEE C95.1-2005/ANSI C95.1-1992
  • Standard
  • FCC RF/NEPA Rules
  • FCC RF Environmental Rules
  • OSHA RF Compliance
  • FCC RF Exposure Regulations overview
  • FCC Frequently Asked RF Exposure
  • Observe RF Exposure Guidelines The Electromagnetic Spectrum Non-Ionizing and Ionizing Radiation
  • Cumulative and Non-Cumulative Radiation
  • Effects FCC Rules and FCC OET Bulletin 65 FCC Rules and FCC OET Bulletin 65
  • Commission for Non-Ionizing Radiation Protection (ICNIRP)
  • Non-Ionizing Radiation Survey
  • PCS, cellular, SMR, paging, Part 15, WiFi, in-building
  • RF Compliance Documentation
  • Electromagnetic shielding
  • EME site audits, evaluations and reports
  • Site specific safety guidelines
  • Software modeling and analysis
  • Field survey and RF measurement
  • Safety policy evaluation and development
  • Complete exposure mitigation
  • RF Radiation (RFR) Safety
  • Non-Ionizing Radiation

RF Field Measurements for Antenna

  • Instrument Overview
  • Detector Designs
  • Effects and Definitions
  • Standards Overview
  • Antenna Designs and Calculations
  • Performing Surveys
  • Documenting a Survey
  • Units of Measure
  • Shaped Frequency Response Probes versus
  • Traditional Flat Frequency Response Probes
  • Measurement Uncertainty and
  • Correction Factors
  • Analog versus Digital Meters
  • Connecting and Zeroing the Probe
  • Checking Probe Functionality
  • Beginning to Make Measurements
  • Identifying High Level Areas First
  • Spatial Averaging Techniques
  • Using the Maximum Hold Feature
  • Impact of the Human Body on
  • Field Measurements

Request More Information

  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.