Price: $2,999.00

Length: 3 Days
Print Friendly, PDF & Email

Fundamentals of Organic Electronics, Crash Course by Tonex

Fundamentals of Organic Electronics is a 3-day course where participants learn the basic concepts behind organic semiconductors and materials as well as learn to identify the added value of organic electronics over conventional electronics.


Many analysts believe Organic electronics will transform the way society interacts with new technology.

Organic semiconductor materials typically come in two forms: as a small molecule consisting of a few tens or hundreds of atoms, or as long chains of thousands of repeating molecules (a plastic).

The latter is particularly interesting, because we don’t normally think of plastics as conductors of electricity. But during the 1970s researchers realized they could make some plastics act as conductors, and some as semiconductors that conduct electricity only under certain conditions.

Currently, organic electronics not only includes organic semiconductors, but also organic dielectrics, conductors and light emitters. New applications include smart windows and electronic paper. Conductive polymers are expected to play an important role in the emerging science of molecular computers.

Organic electronic materials are lighter, more flexible and less expensive than conventional silicon-based inorganic materials. Organic electronics are more energy efficient and save more resources in production, use and disposal.

Small molecule organic electronics are typically fabricated using vacuum-based deposition methods to transfer thin films of organic materials to the substrate surface.

Additionally, organic electronics can be realized from conductive polymers using low-cost solution processing methods. Semiconducting polymers can be solubilized and converted into an ink, allowing electronic circuits to be printed directly on large sheets of plastic.

One particularly interesting aspect about organic electronics is how they can interact with plants, and with microorganisms such as bacteria, fungi, and algae.

In fact, researchers have recently proposed a symbiotic electronic device made of algae and an organic transistor.

In this symbiotic device, a carpet of living algae is printed on top of a large area gate terminal of the transistor. The algae population generates by photosynthesis electrical charges that are then transduced into an electrical current by an array of organic transistors.

The device can be made to float on the ocean surface and generate electricity for remote and stand-alone applications.

In this emergent field, research is also ongoing in what could be the next big revolution in organic electronics, bioelectronics, where organic bioelectronic devices can be used to translate biological signals and promote the regeneration of biological tissues and even repair faulty nervous connections.

Amazingly, organic semiconductors have the unique capability to translate both ionic and electronic signals. Organic semiconductors (OSCs) in particular are receiving increasing attention these days because they have many attractive properties – including light weight, low-cost production, low-temperature processing, mechanical flexibility, and abundant availability – that distinguish them from their conventional inorganic counterparts.

The successful commercialization of active-matrix organic light-emitting diodes (OLEDs) for high-end smartphone displays suggests that organic compounds have promising prospects for use in various other electrical and optoelectrical devices.

Fundamentals of Organic Electronics, Crash Course by Tonex

Fundamentals of Organic Electronics, Crash Course is a 3-day crash course. Organic Electronics Training Course, crash course style,  is an innovative training program covering trends in today’s rapidly changing electronics industry.

Unlike conventional inorganic conductors and semiconductors, organic electronic materials are composed from organic (carbon-based) small molecules or polymers using synthetic strategies developed using organic and polymer chemistry.

One of the promised benefits of organic electronics is their potential low cost compared to traditional inorganic electronics. Organic electronics is concerned with the field of materials science concerning the design, synthesis, characterization, and application of organic small molecules or polymers that show desirable electronic properties such as conductivity. Conductive polymers are lighter, more flexible, and less expensive than inorganic conductors.

This makes them a desirable alternative in many applications. It also creates the possibility of new applications that would be impossible using copper or silicon. Organic electronics not only includes organic semiconductors, but also organic dielectrics, conductors and light emitters.   A primary motivation for organic electronics is the ability to use printing technologies to print various electronic devices and circuits. Printed electronics is a set of printing methods used to create electrical devices on various substrates.

Printing can use printing equipment suitable for defining patterns on material, such as screen printing, flexography, gravure, offset lithography, and inkjet.   Further, as compared with convention electronic industry processes, electronic printing techniques are low cost processes.

For example, electrically functional electronic or optical inks can be deposited on a substrate (such as a flexible substrate or even a paper-based recyclable substrate), creating active or passive devices, such as thin film transistors, capacitors, coils, and resistors. Printed electronics and organic electronics are expected to facilitate widespread, very low-cost, low-performance electronics for applications such as flexible displays, smart labels, decorative and animated posters, and active clothing and many other devices.

Organic electronics training will cover diverse topics including current and next generation display, transistor, photovoltaic, and sensor technologies, concepts, research, products and services.  

Learn about

  • Overview of current and future flexible electronics technologies
  • Next generation organic electronics capability requirements
  • Organic electronics in the technology roadmap
  • Trends in electronics including next generation displays, devices, transistors, solar cells
  • Organic electronics applications and use cases

  Learning Objectives Upon completion of this hands-on training course, the attendees are able to:

  • Understand the basic concepts behind organic semiconductors and materials
  • Identify the added value of organic electronics over conventional electronics
  • Identify material classes, pros and cons of organic semiconductors
  • Describe basic material characterization techniques
  • Describe basic device architectures for organic light-emitting diodes (OLEDs), organic transistors, and organic solar cells.
  • Describe technology bottlenecks preventing the greater use and implementation of organic electronics technologies
  • Describe applications of organic electronics in a variety of fields including healthcare, human machine interfaces, robotics, mobile devices, augmented reality, virtual reality, mixed reality, energy generation, and many other fields
  • Describe the history and state-of-the-art performance and architectures for the various device types
  • Understand underlying physics concepts as relates to organic-inorganic interfaces, organic-organic interfaces, doping of organic films, light generation
  • Understand loss mechanisms in organic devices such as OLEDs and organic solar cells


History, Overview, Market, Applications

  • History of conductive semiconductors and organic semiconductors and devices
  • Economics and future market potential of organic electronic devices
  • Applications: Healthcare, Wearables, Virtual Reality, Energy, Displays, etc.

Materials: Organic Semiconductors

  • Amorphous Molecular Films
  • Molecularly Doped Polymers
  • Molecular Crystals
  • Neat Polymer Films

Materials: Characterization

  • Energy Levels: Ionization Energy, Electron Affinity, HOMO/LUMO, Measurement techniques: UPS, IPES
  • Mobility: Hole Mobility, Electron Mobility, Measurement Techniques
  • Charge Transport: Single Carrier Devices

Related Materials With Organic Electronics Devices Substrates

  • Glass: Different kinds, Waveguide Modes, Encapsulation Considerations
  • Metal Substrates: Aluminum, Silver, Gold, Etc.
  • Flexible Substrates: Thin Metals, Plastics, Polymers, Shape Memory Polymers, Etc.
  • Biodegradable Substrates: Carbon Nanocellulose
  • General Considerations: Mechanical Testing, Environmental Testing, Etc.


Electrodes: Transparent conducting oxides

  • Theory, Materials, Properties
  • Fabrication: Thermal Evaporation, Atomic Layer Deposition (ALD), Other
  • Use in Organic Electronic Devices

Electrodes: Transparent Conducting Polymers

  • Poly(3,4-Ethylenedioxythiophene)
  • PEDOT: Poly(Styrene Sulfonate) PSS
  • Fabrication Techniques: Printing, Spin-Coating, Other

Other Electrodes

  • Graphene
  • Carbon nanotubes
  • Thin Metals
  • Other Exotic, Research Level

Electrode Considerations in Organic Electronics

  • General Electronic Properties: Conductivity, Sheet-Resistance, Measurement, Work Function
  • General Optical Properties: Transmittivity/Reflectivity/Absorption, Measurement
  • Effects in Devices: Surface Plasmons, Fermi-Level Pinning
  • Surface Morphology, Deposition Techniques, Measurement

Organic Field-Effect Transistors (OFETs)

OFETs: History OFETs vs. Inorganic Thin-Film Transistors (TFTs) OFET: Device Structures and Operation

  • Device Structures of OFETs
  • Device Operation of OFETs
  • Electrical Characterization of OFETs: Current-Voltage (I-V) Characteristics, Extraction of Electrical Parameters

OFETs: Fabrication

  • Purification and Deposition of Organic Semiconductors
  • Preparation of Gate Dielectrics and Interfacial Control
  • Patterning and Deposition of Metal Contacts

Advanced OFET Characterization Topics:

  • Ohmic Contact, Contact Resistance, Measuring Contact Resistance
  • Charge Transport Across Metal-Organic Interfaces
  • Channel Dimensions
  • Four-probe Measurements, Kelvin Probe Force Microscopy

Organic Light-Emitting Diodes (OLEDs)

OLEDs: Introduction

  • History
  • Market and Outlook (Mobile Phones, TVs, Flexible Displays)
  • Comparison between OLEDs and other display technologies (LCD, LED, etc.)
  • Performance Targets
  • OLED Applications: Flexible Display, Passive-Matrix Tiling, Active-Matrix Tiling

OLEDs: Display Structure

  • Device Principles and Mechanisms
  • Basic Device Structure
  • Device Architectures: Light Emission from the Bottom and Top of the OLED Device
  • Stacked OLEDs (RGB, White OLEDs)
  • Inverted OLEDs, Stacked Inverted OLEDs
  • Light Extraction Enhancement: Microlens Arrays, Diffusion Structure, Microgrids

OLEDs: Light Emission

  • Fundamentals of photometry: radiance, luminance, photometric versus radiometric quantities, what is used for OLEDs and why
  • Fluorescent OLED
  • Phosphorescent OLED
  • Thermally activated delayed fluorescent (TADF) OLED
  • Metrics: Emission Efficiency, External Quantum Efficiency, Internal Quantum Efficiency, Current and Power Efficiencies
  • Color Reproduction, CIE-coordinates, White-point, CRE

OLEDs: Fabrication

  • Material Preparation, Purification Process
  • Thermal Evaporation Processing: Evaporation Sources, Shadow Mask Patterning
  • Solution-Processed Materials and Technologies
  • Screen printing
  • Lithography
  • Encapsulation: Barrier Technologies, WVTR Measurement
  • Next-Generation OLED Manufacturing Tools
  • Vapor Injection Source Technology (VIST) Deposition
  • Hot-Wall Method
  • Organic Vapor-Phase Deposition (OVPD) Method

OLED Display Modules

  • OLED Module Components
  • Passive-Matrix OLED Display: Structure, Pixel Driving
  • Active-Matrix OLED Display: Structure, Driving: Two-Transistor One-Capacitor (2T1C) Driving Circuit

Organic Photovoltaic Devices (OPV)

OPV: Introduction

  • Why OPV: Cost, Flexibility, Environmental Friendliness, Etc.
  • Market History and Outlook: Top Companies and Universities
  • Comparison with Silicon Solar Cell Technology
  • State-of-the Art Performance to Date
  • Commercialization Efforts

OPV Fundamentals

  • Circuit Models, Open-Circuit Voltage, Shunt Resistance, Series Resistance, Testing, Efficiency
  • Charge Carrier Mobility and Transport
  • Measurement Considerations: AM1.5, Solar Lamps, Lab Testing Vs. Environmental Testing

OPV: Structure and Architecture

  • Single layer
  • Bilayer
  • Heterojunction
  • Bulk Heterojunction
  • Ordered Heterojunctions
  • Stacked/Tandem OPVS
  • Hybrid Organic-Inorganic OPVS

OPV: Fabrication

  • Printing, Wet-Processing
  • Vacuum Thermal Evaporation
  • Organic Vapor Phase Deposition
  • Organic Solar Inks

Request More Information

Please enter contact information followed by your questions, comments and/or request(s):
  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.

Request More Information

  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.