Length: 3 Days
Print Friendly, PDF & Email

Introduction to Electronic Warfare

In general, the more advanced a military adversary, the greater role EW plays in combat.

The DoD has been especially upfront about its desire for greater and more efficient electronic warfare usage. In fact, the DoD has been transitioning from the traditional consideration of electromagnetic warfare as separable from spectrum management to a unified treatment of these activities as Electromagnetic Spectrum Operations (EMSO).

Evidence of this includes the DoD’s recent development of its Electronic Warfare Planning and Management Tool, or EWPMT.

EWPMT is meant to give troops a clear picture of live electronic-warfare conditions, such as jamming or spoofing, and means to counteract or navigate around them. The suite of applications, often seen on a laptop, scours sensors for relevant information and generates an easy-to-read, interactive map.

Ultimately, the Army intends for EWPMT to tether to other electronic warfare platforms, enabling faraway attacks or support.

Electronic warfare (EW) is an integral part of a military operation, enabling and empowering land, sea and air forces to achieve their missions.

Electronic warfare is often employed by friendly forces to establish air superiority through the suppression of enemy air defenses and disruption of communications.

Because electronic warfare is intended to create wholesale confusion and disruption of an adversary’s ability to communicate, monitor and protect its airspace, electronic attack is typically performed by dedicated units – in the air or at sea – whose primary purpose is to achieve wide area spectrum dominance.

Experts in this area believe there are three technologies responsible for making EW the efficient and effective tool it is today in modern warfare.

Radar and radar jamming and deception make it possible to detect incoming enemy forces far outside visible range, without the enemy being aware they had been detected. Some military historians argue that radar was the most important technological innovation of the Second World War, surpassing even jet engines or the atomic bomb in the impact it has had on military affairs.

Frequency hopping was another key breakthrough. Almost from the moment that militaries adopted radio, opposing forces began to intercept each other’s communications to gain valuable intelligence about the other side. This made extremely complex forms of cryptography necessary since decision-makers had to operate under the assumption that the enemy might be listening in.

One approach to preventing this was the Frequency-Hopping Spread Spectrum (FHSS). A normal radio transmission is sent across only one frequency. Using FHSS, the carrier wave is rapidly switched across multiple frequency channels in an apparently random sequence.

Active Electronically-Scanned Arrays (AESA) have also been crucial. AESA radar is highly resistant to modern radar jamming techniques due to the use of a technique called “chirping,” which is similar in principle to frequency hopping.

Using this approach, the radar signal is spread across a wide range of frequencies and can vary even within individual pulses. The sequences of variation are totally random and as a result, is it essentially impossible for an adversary to detect a pattern and counteract it.

Introduction to Electronic Warfare Training by Tonex

Introduction to Electronic Warfare Training covers the basics of Electronic Warfare (EW) foundation designed for analysts, engineers, electrical engineers, project managers, electronic warfare technical professionals.

Introduction to Electronic Warfare provides the foundation for

understanding the basic concepts underlying electronic warfare (EW). This course uses a practical building-block approach to facilitate student comprehension of the essential subject matter associated with the combat applications of EW.

Learning Objectives

Upon completion of Introduction to Electronic Warfare Training, the attendees are able to:

  • List basis of Electronic Warfare (EW) concepts, keywords, architecture and technologies
  • Relate to the application of electronic warfare concepts to ground, airborne and naval surface warfare
  • Describe the key concepts of electromagnetic field theory
  • Describe prorogation models, communication intercept and jamming performance prediction
  • Learn the basics of radars and radar cross section
  • List the functional and operational susceptibilities of weapon systems to electronic warfare

Who Should Attend?

  • Technical personnel
  • Electronic warfare or radar system planning, design, development, operations and maintenance
  • Electrical engineers
  • Software engineers
  • System engineers
  • System analysts
  • Cyber security professionals
  • Verification and validation personnel
  • Project managers
  • Program managers

Course Outline

Introduction to Electronic Warfare (EW)

  • Electronic Warfare principles
  • Overview of signals such as radio, infrared or radar
  • Electronic Warfare architecture
  • Naval EW
  • Ground EW
  • Airborne EW
  • Cyber EW
  • RF electronic warfare
  • Infrared Countermeasures

Overview of Electronic Warfare (EW) Key Concepts

  • Electromagnetic Environment (EME)
  • Electronic Order of Battle (EOB)
  • EW subdivisions:
  • Electronic Attack (EA)
  • Electronic Protection (EP)
  • Electronic Warfare Support (ES)
  • EM energy or anti-radiation weapons
  • Electronic Counter Measures (ECM)
  • Jamming and chaff
  • Defensive ECM (DECM)
  • Electronic counter-counter measures (ECCM)
  • Radar Warning Receiver (RWR)
  • Jammers and EW transmitters
  • Signal Intelligence (SIGINT)
  • Electronic Intelligence (ELINT)
  • Communications Intelligence (COMINT)
  • Electronic Warfare Support Measures (ESM)
  • Mission effectiveness and warfighter survivability
  • Integrated electronic warfare
  • Digital Electronic Warfare System

Principles of Intelligence, Surveillance, Reconnaissance (ISR) Applied in EW

  • Electronic Warfare ISR Processes
  • Overview of  Intelligence, Surveillance , and Reconnaissance
  • Threat simulation
  • Measurement and Signatures Intelligence (MASINT)
  • Electronic Intelligence (ELINT)
  • Human Intelligence (HUMINT)
  • Imagery Intelligence (IMINT)
  • Signals Intelligence (SIGINT)

Key Technology Enablers of Modern and Emerging Radar Systems

  • Radar, EW and ELINT signal simulation Radar
  • Threat Simulation
  • Target Applications
  • Radar systems
  • EW systems
  • IED defeat systems
  • Pulse Timing Pattern Parameters Pulse Repetition Interval Patterns

Electronic Warfare Functions and Capabilities

  • Ability to use the electromagnetic spectrum
  • Key concepts to sense, protect, and communicate
  • Overview of Electronic Warfare major areas and function
  • Electronic Attack
  • Disrupting signals
  • Electronic Protection
  • Preventing a receiver from being jammed
  • Electronic Support
  • Producing the data necessary to disrupt the electromagnetic spectrum Listening
  • Collecting radio signals
  • Sensing the radar of an incoming missile
  • Weapon systems
  • Radar systems
  • Radar cross section
  • Search radars
  • Tracking radars
  • Electronic support measures
  • Electromagnetic countermeasures
  • Off-board self-protection electromagnetic countermeasures

Characteristics Of Electromagnetic Radiation  

  • Frequency and Wavelength
  • Polarization
  • Doppler Effect
  • Electromagnetic Spectrum
  • RF Propagation
  • Radar Signal Characteristics
  • Pulse Width (PW)
  • Pulse Recurrence Time (PRT)
  • Pulse Repetition Frequency (PRF)
  • Radar Receiver Characteristics
  • Duty Cycle
  • Peak Power
  • Average Power
  • Modulation
  • Radar System Components
  • Pulse Radar System
  • Continuous Wave (Cw) Radar
  • Pulse Doppler Radar
  • Monopulse Radar
  • Modern Radars
  • Phased Array Radars

Radar Principles

  • Radar Range
  • Azimuth Determination
  • Elevation Determination
  • Radar Resolution Cell
  • Pulse Doppler Velocity Determination 5
  • Basic Radar Equation 5
  • Radar Cross Section (RCS)
  • Antenna Characteristics and Scans
  • Parabolic Antenna
  • Cassegrain Antenna
  • Phased Array Antenna
  • Antenna Gain
  • Power Density
  • Circular Scan
  • Target Tracking
  • Radar Missile Guidance Techniques
  • Radar Jamming Types
  • Deception Jamming
  • Radar Electronic Protection (EP) Techniques
  • Radar Warning Receiver (RWR) Basic Operations and Geolocation Techniques

Decoys and Chaffs

  • Saturation Decoys
  • Towed Decoys
  • Expendable Active Decoys
  • Chaff Employment
  • Chaff Characteristics
  • Chaff Operational Employment

EO/IR Fundamentals

  • Basic EO/IR Theory
  • IR Signature Sources
  • EO/IR Seeker Characteristics
  • IR Seeker Types
  • Missile Flare Rejection
  • EO/IR Countermeasures

Radar EW Simulation and Analysis

  • Antenna Pattern Properties and Definitions
  • Bore-Sight
  • Bearing Angle
  • Beam width
  • Side Lobe Level

EW Workshop Topics

  • Advanced RF Electronic Warfare Discussions
  • EW Systems Test Evaluation
  • EW System Integration
  • Analysis of Threat Radar Systems
  • Advanced Modeling and Simulation
  • Software-Defined Radio (SDR) Applied
  • Millimeter Signal Measurements:
  • Photonics in EW Application
  • EW Best Practices
  • Special coverage on Jamming Techniques and Electronic Protection
  • Working with Spectrum Analyzers and Basic Radar Systems


Introduction to Electronic Warfare

Request More Information

Please enter contact information followed by your questions, comments and/or request(s):
  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.

Request More Information

  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.