Length: 2 Days
Print Friendly, PDF & Email

MBSE and Digital Engineering Workshop

The value of model based systems engineering (MBSE) in building the digital enterprise is substantial.

Rather than using traditional document-based data through the systems engineering and systems integration life cycle, MBSE uses models and simulations as the primary means of information exchange and to create digital threads and “digital twins” for systems. MBSE’s integrated data set approach:

  • Improves system quality, consistency and digital traceability
  • Increases personnel productivity and efficiency
  • Early risk identification, ,cost reduction, schedule and performance improvement
  • Enhances communications across key stakeholder groups
  • Eliminates single point failures through collaboration, knowledge sharing, and the exchange of models and their underlying data

A critical capability in digital engineering, MBSE integrates iterative, comprehensive design with insights into the implications of choices, changes, and system behaviors.

A model-based systems engineering (MBSE) approach consists in using a formal digital language to specify, design, analyze and verify a system. It enables the implementation of workbenches providing modeling services such as edition, visualization, transformation, comparison, storage, etc.

It allows systems architects to work on a system across the whole spectrum from a business needs perspective, to the physical implementation, including the logical decomposition of the system.

The interplay between Model Based Systems Engineers (MBSE) and digital engineering (DE) has been a focal point for the U.S. Department of Defense (DoD).

In fact, the Under Secretary of Defense for Research and Engineering released a DoD digital engineering strategy, which outlines strategic goals for engineering transformation. One of those strategies involves the development, integration and use of models to inform enterprise and program decision making.

The belief is that digital engineering extends beyond traditional model-based approaches that typically focus on a particular activity or aspect (e.g., model-based design, digital model-based manufacturing, model-based testing, model-based manufacturing, model-based X) of the lifecycle.

For MBSE, the focus is on formal systems modeling across the lifecycle. The vision for digital engineering is to encompass the broad spectrum of models as a continuum across the lifecycle.

Another strategy is to provide an enduring, authoritative source of truth. This goal moves the primary means of communication from documents to digital models and data. This enables access, management, analysis, use, and distribution of information from a common set of digital models and data. As a result, authorized stakeholders have the current, authoritative, and consistent information for use over the lifecycle.

The MSBE/digital engineering relationship for DoD also is intended to incorporate technological innovation to improve engineering practices. This strategy extends beyond the traditional model-based approaches to incorporate advancements in technology and practice. Digital engineering approaches also support rapid implementation of innovations within a connected digital end-to-end enterprise.

MBSE and Digital Engineering Workshop Course by Tonex

MBSE and Digital Engineering Workshop is a 2-day training workshop that covers Model-based systems engineering (MBSE), Digital Engineering practices and tools, as well as methods like DODAF, UAF, UPDM, SysML, and more. MBSE and Digital Engineering workshop will help the participants and lead to greater efficiency and improved quality of all the acquisition activities.

Department of Defense (DoD) Digital Engineering Strategy covers five goals to streamline the DoD acquisition process through the creation of a digital thread enabling the conception, design, and development of complex weapon systems including creation of computer readable models to represent all aspects of the system and to support all the activities for the design, development, manufacture, and operation of the system throughout its lifecycle.

Models would have to be based on shared data schemata so that in effect a digital thread integrates all the diverse stakeholders involved in the acquisition of new weapon systems.

Participants will learn about Model-based systems engineering (MBSE) and digital engineering supporting acquisitions and systems engineering activities of concepts, requirements, architecture, design, integration, verification, and validation.

Workshop Topics Include:

Foundations of Systems Engineering (SE)

  • SE and Management
  • Applications of Systems Engineering
  • Enabling Systems Engineering

Introduction to Digital Engineering

  • Formalize the development, integration
    and use of models
  • Enterprise and program decision making
  • Technological innovation to improve the engineering practice
  • Culture and workforce to support digital engineering
  • Lifecycle SE Transformation with Digital Engineering
  • Model-Based Systems Engineering (MBSE)
  • Overview of Systems Modeling Language (SysML)
  • SysML Diagrams
  • Transitioning Systems Engineering to a Model-based Discipline
  • SE Implementation and Digital Engineering Case Studies and Examples

Overview of Enterprise Architecture Frameworks

  • Department of Defense Architecture Framework (DoDAF)
  • Quick Overview of MoDAF, NAF and FEAF
  • UPDM, UAF, and SysML
  • Overview of Operational Activity Diagrams and BPMN Notation
  • Introduction to UPDM
  • Introduction to MBSE and SysML
  • Integration of DoDAF, UPDM and SysML
  • Working with DoDAF, UAF and SysML

Unified Architecture Framework (UAF) and System Integration

  • Architectures and models for a broad range of complex systems: hardware, software, data, personnel, and facility elements
  • Consistent architectures and modeling for system-of-systems (SoS) down to lower levels of design and implementation;
  • Analysis, specification, design, and verification of complex systems
  • Cybersecurity analysis, specification, and mitigation of security risks from a system/infrastructure perspective

Models, Simulations, and Digital Engineering

  • Integrated Digital Systems Engineering Process
  • Systems Engineering Methodology
    Digital engineering and the advanced computerization of systems engineering practices.
  • Digital engineering to create complex, latticed systems of products, services, and capabilities
  • Tools to digitally generate, curate, share, extract, and work with computable data and information
  • Digital engineering modeling and simulation
  • Models, Simulations, and Digital Engineering
    in Systems Engineering with MBSE and SysML
  • Modeling and Simulation (M&S) for Systems Engineering
  • Preparing for Digital Engineering Modeling and Simulation (M&S)
  • Activities to Advance Digital Engineering
  • Stove-piped models and data sources
  • Acquisition Considerations and Digital Engineering Ecosystem

Workshop Activities: Working with UAF Models and SysML Diagrams

  • Activity Diagram (act)
  • Block Definition Diagram (bdd)
  • Connectivity (Cn)
  • Constrains (Ct)
  • Information (If)
  • Interaction Scenarios (Is)
  • Internal Block Diagram (ibd)
  • Parameters (Pm)
  • Parametric Diagram (par)
  • Processes (Pr)
  • Requirement Diagram (req)
  • Requirements (Req)
  • Sequence Diagram (sd)
  • State Machine Diagram (stm)
  • States (St)
  • Structure (Sr)
  • Summary & Overview (Sm-Ov)
  • Taxonomy (Tx)


MBSE and Digital Engineering Workshop

Request More Information

Please enter contact information followed by your questions, comments and/or request(s):
  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.

Request More Information

  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.