Price: $3,999.00

Length: 4 Days

When: January 13, 2020, 10:00 am - January 16, 2020, 5:00 pm
Where: Nashville, TN, USA

Print Friendly, PDF & Email

Satellite Communications Training

After the world has seen 8,378 satellites launched, there’s a tendency to take them and the services they provide for granted.

You shouldn’t.

Satellites are largely responsible for the quality of life humans now experience on Earth.

These man-made objects put into orbit often affect our lives without us realizing it. Satellites make us safer, provide modern conveniences and broadcast entertainment.

Currently there are 4,994 satellites still in orbit. The benefits of satellite technology are considerable. Some of the areas satellites assist in include:

  • Space Science and military – The most interesting phenomena are best studied at frequencies that are only accessible from space.
  • Television — Satellites send television signals directly to homes, but they also are the backbone of cable and network TV.
  • Weather – Meteorologists would not have the ability to visualize weather on a global scale if not for satellites.
  • Safety – Satellites monitor ocean and wind currents as well as forest fires and airborne pollution. They can also help locate people in distress in remote regions.
  • Navigation — Satellite-based navigation systems like GPS enable anyone with a handheld receiver to determine their location to within a few meters.

Truth is, a satellite is an amazingly complex and expensive machine with tons of electronic bits and pieces loaded into it. And, while satellites come in many shapes and sizes, most have at least two parts in common:

  1. An antenna used to send and receive information
  2. A power source such as a solar panel or battery

Communications satellites probably receive the most attention from the public. These act as space mirrors that can help us bounce radio, TV, internet data, and other kinds of information from one side of Earth to the other.

Satellite Communications Training Course by Tonex

Satellite Communications Training crash course focuses on satellite communications  payloads, systems engineering and architecture of satellite systems including application requirements such as digital video and broadband media, mobile services, IP networking and UDP/TCP/IP services, concept of operations, identifying end-to-end.satellite payload requirements and constellation.

This popular and intensive Satellite Communications Training crash course provides attendees with an in-depth knowledge of satellite communication principals and techniques and key emerging technologies.

Who Should Attend

The course is ideal for engineers and managers involved in Satellite Communications planning, architecture, design, implementation and operation.

Course Objectives

Upon completion of this course, attendees will:

  • Learn the basic introduction to RF characteristics and modelling tools used to calculate spurious signals, inter-modulation levels, phase noise, Bit Error Rate and RF interference
  • Gain familiarity with merits such as Gain to Noise Temperature Ratio (G/T) and
    provide an in-depth knowledge of satellite communication systems planning, design, operation and maintenance
  • Gain familiarity with propagation, link budget, RF planning, system tradeoffs multiple access, modulation and coding schemes
  • Gain familiarity with system architecture of satellite communications payloads
  • Learn the basic aspects of satellite performance
  • Gain familiarity with repeater design and different repeater components
  • Gain familiarity with key communications parameters
  • Basic introduction of speech and video coding, satellite networking, TCP/IP and other trends
  • Learn the basic satellite communication cybersecurity and mitigation
  • Gain familiarity with  Mobile User Objective System (MUOS) and Wideband Code Division Multiple Access (WCDMA) principles

Course Topics

Introduction to Satellite Communications (SATCOM)

  • Different types of satellite orbits and payloads
  • Geostationary Earth Orbit (GEO) system
  • Low Earth Orbit (LEO) system
  • Medium Earth Orbit (MEO) system
  • Highly Elliptical Orbit (HEO) system
  • Major categories of satellite services defined by ITU
  • Broadcasting Satellite Service
  • Mobile Satellite Service
  • Fixed Satellite Service
  • Satellite communications systems engineering principals
  • Digital Direct-to-Home (DTH) TV
  • VSAT services
  • 2-way interactive services
  • Mobile communications technologies
  • Service and performance requirements

Planning and Design (Earth & Planetary)

  • Satellite constellations
  • Satellite orbits
  • Orbital mechanics basics
  • Satellite coverage
  • Space environment orbit and attitude determination and analysis
  • Propulsion system
  • Spacecraft operations and automation
  • Spacecraft navigation
  • Coverage and communication analysis

Satellite Communications Principles

  • Terrestrial Systems
  • Satellite communication systems
  • Satellite communication system architecture
  • Satellite access
  • Radio link reliability
  • Doppler effect
  • Satellite constellations
  • Spot beams
  • Radio Link
  • Spectrum issues
  • Spectrum sharing methods
  • Propagation characteristics
  • General propagation characteristics
  • Analog and digital Modulation
  • Digital modulation and Coding
  • Satellite RF Link
  • Multiple access principles
  • Earth Stations
  • Antennas
  • Satellite system performance
  • Link budget analysis
  • System tradeoffs

System Specification and Requirement Writing

  • Spacecraft subsystems areas
  • Communications payload, Altitude Control, Propulsion, Electrical Power and Distribution, Payload, Thermal, Telemetry, Tracking and Command, and Orbit Control
  • Satellite Radio building blocks
  • Satellite ground segment
  • Earth stations subsystem
  • Various types of satellite payloads
  • Satellite transponders
  • Bent-pipe Satellites
  • Key technology advancements in Satellite Communications (SATCOM) payloads for telecommunications services
  • Different types of orbits for satellites
  • International regulations (ITU-T) governing the frequency planning and coordination of the diverse satellite networks

Requirement analysis  of the Satellite Payload

  • Capabilities of different repeater components
  • Assessment techniques for performance of all major building blocks including repeaters, antenna system, and tracking
  • Critical subsystem and system design concepts such as power budget, loss, group delay, IM (Intermodulation) distortion, digital impairments, cross-polarization, adjacent satellite and channel interference
  • Design principles and performance budgets for system elements such as receivers, phased-array antennas, multiplexers, amplifiers, analog and digital processors, reflector, feeds and other passive and active components
  • System verification of payload and ground segment performance
  • Evaluation of subsystem / system performance, and guidelines for overseeing development

Key Payload Communications Parameters

  • Gain and phase variation with frequency
  • Phase Noise
  • Frequency Stability
  • Spurious signals from frequency converter
  • Self-interference products
  • Passive Intermodulation products
  • Noise figure and payload performance budgets
  • Engineering specifications and techniques for payload compatibility with the satellite bus
  • Communications satellite’s transponder
  • Communications channel between the receiving and the transmitting antennas

Transponder System Design and Architecture

  • System tradeoffs
  • RF tradeoffs (RF power, EIRP, G/T)
  • Input band limiting device (a band pass filter)
  • Input low-noise amplifier (LNA)
  • Frequency translator
  • Oscillator and a frequency mixer
  • Output band pass filter
  • Power amplifier
  • Traveling-wave tube
  • Solid state amplifiers
  • Design elements and specifications for the satellite communications payload
  • “Bent pipe” principle
  • Bent-pipe repeater subsystem
  • Regenerated mode
  • Regenerated and bent-pipe mode
  • Bent-pipe topology
  • On-board processing
  • Demodulated, decoded, re-encoded and modulated signals

Communications Payload Performance Management

  • Performance and capacity planning
  • Payload system Tradeoffs
  • Bent-pipe repeater analysis and design
  • Antenna Design and Performance
  • Link budget
  • On-board Digital processor
  • A/D and D/A conversion
  • DSP (digital signal processing)
  • Multiple access technologies
  • Principles behind FDMA, TDMA, CDMA
  • Demodulation and remodulation
  • Multiplexing
  • Multi-beam Antennas
  • RF Interference
  • Spectrum Management

SATCOM Networks and System Cybersecurity

  • SATCOM Systems Attacks
  • SATCOM System Vulnerabilities
  • Exploiting SATCOM Systems and Devices
  • Hacking/exploitation techniques, tools and entry points
  • Cybersecurity Attacks and Best Mitigation Practices for SATCOM Systems

Overview of Military Satellites

  • Military Satellite Common Missions
  • ISR, intelligence gathering, navigation and military communications
  • Photographic reconnaissance missions
  • Overview of narrowband and broadband military communications satellite systems

Overview of Mobile User Objective System (MUOS)

  • MUOS orbiting satellites
  • MUSO system survey
  • MUOS satellites payload
  • Lockheed’s A2100 satellite bus
  • MUOS radio terminal users and space segment payload
  • UHF data uplink (300-320 MHz)
  • Conversion to Ka-Band for downlink to ground stations
  • Uplink Ka-Band as part of a ground station feeder link
  • Conversion to UHF (360-380MHz) by the satellite for reception by mobile users
  • MUOS spot beams
  • Data rates of up to 384kbps  for mobile users
  • Voice, data and combined voice/data communications
  • Principles of 3G broadband wireless and WCDMA
  • Wideband Code Division Multiple Access (WCDMA) payload
  • Legacy UHF payload
  • Principles of ultra high frequency (UHF) band and next generation of narrowband communications
  • Secure ultra-high frequency (UHF) satellite communications (SATCOM) for mobile force

Satellite Communications Training

Request More Information

  • Please complete the following form and a Tonex Training Specialist will contact you as soon as is possible.

    * Indicates required fields

  • This field is for validation purposes and should be left unchanged.